
Lab 7. Intro to Ollama
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
October 30, 2025

Introduction

Introduction

• This session provides a hands-on introduction to Ollama,
which helps us running LLMs locally.

1

What is Ollama?

• Running LLMs locally can be challenging — setup,
dependencies, and GPU configurations can be complex.

• Ollama simplifies local development with open-source LLMs.
• Think of it as Docker for LLMs— each model (with weights +
config) is packaged into a single Modelfile.

• You can easily pull, run, and customize models locally.

2

What is Ollama?

• Running LLMs locally can be challenging — setup,
dependencies, and GPU configurations can be complex.

• Ollama simplifies local development with open-source LLMs.

• Think of it as Docker for LLMs— each model (with weights +
config) is packaged into a single Modelfile.

• You can easily pull, run, and customize models locally.

2

What is Ollama?

• Running LLMs locally can be challenging — setup,
dependencies, and GPU configurations can be complex.

• Ollama simplifies local development with open-source LLMs.
• Think of it as Docker for LLMs— each model (with weights +
config) is packaged into a single Modelfile.

• You can easily pull, run, and customize models locally.

2

What is Ollama?

• Running LLMs locally can be challenging — setup,
dependencies, and GPU configurations can be complex.

• Ollama simplifies local development with open-source LLMs.
• Think of it as Docker for LLMs— each model (with weights +
config) is packaged into a single Modelfile.

• You can easily pull, run, and customize models locally.

2

Step 0: Set Up a Python Virtual Environment

• Before writing code with the ollama Python library, it’s good
practice to work inside a virtual environment.

• This keeps dependencies isolated from your global Python
installation.

3

Step 1: Install Ollama

• Ollama supports macOS, Windows, and Linux.
• Download from the official site:
https://ollama.com/download

• Installation auto-detects your GPU drivers (NVIDIA/AMD).
• CPU mode works fine but is slower.

4

https://ollama.com/download

Step 2: Install a Model

• Visit the model library at ollama.com/library. Each model
family has multiple sizes and variants - so please take a look
first!

• For example, if you choose gemma2 → ollama run
gemma:2b

• The model (1.7B parameters) will download and cache
locally.

• If you enter ollama list in the terminal, you can see which
models are installed.

5

https://ollama.com/library

Step 3: Run the Model

There are several functions:

• 1. Chat with the model.

>>> Why is the sky blue?
The sky appears blue because of light scattering...
>>> /bye (if you want to exit)

• The model will respond interactively
• Try a few simple questions!

6

Step 3: Run the Model

There are several functions:

• 2. Multiline input
• If you want to enter a long message, enclose it with triple
quotation marks (”””).

>>> """
Hello!
Hope you have a great day!
"""

7

Step 3: Run the Model

There are several functions:

• 3. Some multimodal models also support image input.

>>> What’s in this image? /path/to/sunflower.png
The image shows a sunflower...

8

Step 4: Use Ollama with Python

• Ollama can also be used in applications (e.g., Python library)

• First, install the Python package:

$ pip install ollama

9

Step 4: Use Ollama with Python

• Ollama can also be used in applications (e.g., Python library)
• First, install the Python package:

$ pip install ollama

9

Example: Python Script

[language=Python]
import ollama

response = ollama.generate(
model='gemma:2b',
prompt='What is a qubit?'

)
print(response['response'])

• The output will contain a locally generated LLM response.
• You can use this setup to build custom apps and chat
interfaces.

• Please check here: https:
//ollama.com/blog/python-javascript-libraries

10

https://ollama.com/blog/python-javascript-libraries
https://ollama.com/blog/python-javascript-libraries

Task

Assignment: Run and Customize a Local LLM

• Goal: Use Ollama to run a local LLM and explore how system
prompts affect model behavior.

• You will write a short Python script that:
• Generates text from a locally run LLM
• Demonstrates a simple, clearly defined use case
• Prints and saves the model’s output

11

Step 1: Choose a Model

• You can use any open model available on Ollama:

• Define your own use case (write 1–2 lines as a comment in
your code). For example:

• Summarize a short paragraph
• Generate a creative story
• Translate a sentence
• Explain a concept simply
• Extract keywords from text

12

Step 2: Write Your Script

Example:

import ollama
SYSTEM_PROMPT = "Always explain concepts in simple, clear English."
USER_PROMPT = "Explain how quantum computers work in one paragraph."
response = ollama.generate(

model='gemma:2b',
system=SYSTEM_PROMPT,
prompt=USER_PROMPT

)
print(response['response'])
with open("ollama_output.txt", "w") as f:

f.write(response['response'])

13

Step 2: Write Your Script

• Load the model you selected.
• Include a system prompt that defines the model’s tone or
behavior.

• Save the generated output to a text file.
• You can generate a serious of texts if you want to.

14

Step 3: Save and submit

• Submit the following files:
• task.py (your Python script) (3 points)
• output.txt (model output) (3 points)
• README.txt— 2–3 lines explaining: (4 points)

• What model you used
• What your system prompt was
• What you observed about the response

• Zip all files as: lastname_firstname_ollama_lab.zip

15

Grading Criteria Overview

• 3 pts – Python Script: Runs without errors and uses the
Ollama API correctly.

• 3 pts – Output File: Generated by the local model, relevant
to the task.

• 4 pts – Reflection (README): Comment on model behavior,
prompt design, and result quality.

16

Reminder

Reminder

17

	Introduction
	Task
	Reminder

